Module tfrec.models.svdpp

Expand source code
import tensorflow as tf
from tensorflow import keras
import numpy as np


class SVDpp(keras.Model):
    """ **SVD++** - An extension of the SVD Model employing implicit feedback.

    As originally demonstrated in the paper -
    Factorization meets the neighborhood: a multifaceted collaborative filtering model
    https://dl.acm.org/doi/10.1145/1401890.1401944 Section 4.

    ...

    Attributes
    -----------
    n_users : int
        Total number of users in the dataset.
    n_items : int
        Total number of items in the dataset.
    global_mean : float
        Mean of ratings in the training set.
    embedding_dim : int, optional
        Number of factors for user and item (default is `50`).
    init_mean : float, optional
        Mean of random initilization for embeddings (default is `0`).
    init_std_dev : float, optional
        Standard deviation of random initilization for embeddings (default is `0.1`).
    reg_all : float, optional
        L2 regularization factor for all trainable variables (default is `0.0001`).
    reg_user_embed : float, optional
        L2 regularization factor for user embedding (default is `reg_all`).
    reg_item_embed : float, optional
        L2 regularization factor for item embedding (default is `reg_all`).
    reg_user_bias : float, optional
        L2 regularization factor for user bias (default is `reg_all`).
    reg_item_bias : float, optional
        L2 regularization factor for item bias (default is `reg_all`).
    random_state : integer, optional
        Seed variable, useful for reproducing results (default is `None`).

    Raises
    ------
    AttributeError
        If the method `implicit_feedback(X)` is not called before calling `fit()`.
    """

    def __init__(self, n_users, n_items, global_mean, embedding_dim=50, init_mean=0, init_std_dev=0.1, reg_all=0.0001,
                 reg_user_embed=None, reg_item_embed=None, reg_impl_embed=None, reg_user_bias=None, reg_item_bias=None, random_state=None, **kwargs):

        super().__init__(**kwargs)
        self.n_users = n_users
        self.n_items = n_items
        self.global_mean = global_mean.astype(np.float32)
        self.embedding_dim = embedding_dim
        self.init_mean = init_mean
        self.init_std_dev = init_std_dev
        self.reg_all = reg_all
        self.reg_user_embed = reg_all if not reg_user_embed else reg_user_embed
        self.reg_item_embed = reg_all if not reg_item_embed else reg_item_embed
        self.reg_impl_embed = reg_all if not reg_impl_embed else reg_impl_embed
        self.reg_user_bias = reg_all if not reg_user_bias else reg_user_bias
        self.reg_item_bias = reg_all if not reg_item_bias else reg_item_bias
        self.random_state = random_state

        self.user_embedding = keras.layers.Embedding(
            input_dim=self.n_users, output_dim=self.embedding_dim,
            embeddings_initializer=tf.keras.initializers.RandomNormal(
                mean=self.init_mean, stddev=self.init_std_dev, seed=self.random_state),
            embeddings_regularizer=tf.keras.regularizers.L2(
                self.reg_user_embed)
        )
        self.item_embedding = keras.layers.Embedding(
            input_dim=self.n_items, output_dim=self.embedding_dim,
            embeddings_initializer=tf.keras.initializers.RandomNormal(
                mean=self.init_mean, stddev=self.init_std_dev, seed=self.random_state),
            embeddings_regularizer=tf.keras.regularizers.L2(
                self.reg_item_embed)
        )
        self.item_implicit_embedding = keras.layers.Embedding(
            input_dim=self.n_items, output_dim=self.embedding_dim,
            embeddings_initializer=tf.keras.initializers.RandomNormal(
                mean=self.init_mean, stddev=self.init_std_dev, seed=self.random_state),
            embeddings_regularizer=tf.keras.regularizers.L2(
                self.reg_impl_embed)
        )
        self.user_bias = keras.layers.Embedding(
            input_dim=self.n_users, output_dim=1,
            embeddings_initializer=tf.keras.initializers.Zeros(),
            embeddings_regularizer=tf.keras.regularizers.L2(self.reg_user_bias)
        )
        self.item_bias = keras.layers.Embedding(
            input_dim=self.n_items, output_dim=1,
            embeddings_initializer=tf.keras.initializers.Zeros(),
            embeddings_regularizer=tf.keras.regularizers.L2(self.reg_item_bias)
        )

    def implicit_feedback(self, X):
        """Maps a user to rated items for implicit feedback.

        Needs to be called before fitting the Model.

        Parameters
        ----------
        X : numpy.ndarray
            User Item table.

        Raises
        ------
        AttributeError
            If this is not called before calling `fit()`.
        """

        self.user_rated_items = [[] for _ in range(self.n_users)]
        for u, i in zip(X[:, 0], X[:, 1]):
            self.user_rated_items[u].append(i)

        # Converts to ragged tensor to be used during forward pass
        self.user_rated_items = tf.ragged.constant(
            self.user_rated_items, dtype=tf.int32)

    def call(self, inputs):
        """Forward pass of input batch."""
        # Separate Inputs
        user, item = inputs[:, 0], inputs[:, 1]

        # Get Embeddings
        user_embed, item_embed = self.user_embedding(
            user), self.item_embedding(item)
        user_bias, item_bias = self.user_bias(user), self.item_bias(item)

        # Gather Rated Items & their lengths
        rated_items = tf.gather(self.user_rated_items, user)
        item_lengths = tf.cast(
            tf.map_fn(tf.shape, rated_items).to_tensor(), dtype=tf.float32)

        # Calculate Implicit Feedback
        implicit_embed = self.item_implicit_embedding(rated_items)
        implicit_embed_sum = tf.reduce_sum(implicit_embed, axis=1)
        moderated_implicit_embed = tf.math.divide(
            implicit_embed_sum, tf.math.sqrt(item_lengths))

        # Calculate Final Rating with bias
        total_user_embed = tf.math.add(user_embed, moderated_implicit_embed)
        rating = tf.math.reduce_sum(tf.multiply(
            total_user_embed, item_embed), 1, keepdims=True)
        total_bias = tf.math.add(
            self.global_mean, tf.math.add(user_bias, item_bias))
        rating = tf.math.add(rating, total_bias)

        return rating

Classes

class SVDpp (n_users, n_items, global_mean, embedding_dim=50, init_mean=0, init_std_dev=0.1, reg_all=0.0001, reg_user_embed=None, reg_item_embed=None, reg_impl_embed=None, reg_user_bias=None, reg_item_bias=None, random_state=None, **kwargs)

SVD++ - An extension of the SVD Model employing implicit feedback.

As originally demonstrated in the paper - Factorization meets the neighborhood: a multifaceted collaborative filtering model https://dl.acm.org/doi/10.1145/1401890.1401944 Section 4.

Attributes

n_users : int
Total number of users in the dataset.
n_items : int
Total number of items in the dataset.
global_mean : float
Mean of ratings in the training set.
embedding_dim : int, optional
Number of factors for user and item (default is 50).
init_mean : float, optional
Mean of random initilization for embeddings (default is 0).
init_std_dev : float, optional
Standard deviation of random initilization for embeddings (default is 0.1).
reg_all : float, optional
L2 regularization factor for all trainable variables (default is 0.0001).
reg_user_embed : float, optional
L2 regularization factor for user embedding (default is reg_all).
reg_item_embed : float, optional
L2 regularization factor for item embedding (default is reg_all).
reg_user_bias : float, optional
L2 regularization factor for user bias (default is reg_all).
reg_item_bias : float, optional
L2 regularization factor for item bias (default is reg_all).
random_state : integer, optional
Seed variable, useful for reproducing results (default is None).

Raises

AttributeError
If the method implicit_feedback(X) is not called before calling fit().
Expand source code
class SVDpp(keras.Model):
    """ **SVD++** - An extension of the SVD Model employing implicit feedback.

    As originally demonstrated in the paper -
    Factorization meets the neighborhood: a multifaceted collaborative filtering model
    https://dl.acm.org/doi/10.1145/1401890.1401944 Section 4.

    ...

    Attributes
    -----------
    n_users : int
        Total number of users in the dataset.
    n_items : int
        Total number of items in the dataset.
    global_mean : float
        Mean of ratings in the training set.
    embedding_dim : int, optional
        Number of factors for user and item (default is `50`).
    init_mean : float, optional
        Mean of random initilization for embeddings (default is `0`).
    init_std_dev : float, optional
        Standard deviation of random initilization for embeddings (default is `0.1`).
    reg_all : float, optional
        L2 regularization factor for all trainable variables (default is `0.0001`).
    reg_user_embed : float, optional
        L2 regularization factor for user embedding (default is `reg_all`).
    reg_item_embed : float, optional
        L2 regularization factor for item embedding (default is `reg_all`).
    reg_user_bias : float, optional
        L2 regularization factor for user bias (default is `reg_all`).
    reg_item_bias : float, optional
        L2 regularization factor for item bias (default is `reg_all`).
    random_state : integer, optional
        Seed variable, useful for reproducing results (default is `None`).

    Raises
    ------
    AttributeError
        If the method `implicit_feedback(X)` is not called before calling `fit()`.
    """

    def __init__(self, n_users, n_items, global_mean, embedding_dim=50, init_mean=0, init_std_dev=0.1, reg_all=0.0001,
                 reg_user_embed=None, reg_item_embed=None, reg_impl_embed=None, reg_user_bias=None, reg_item_bias=None, random_state=None, **kwargs):

        super().__init__(**kwargs)
        self.n_users = n_users
        self.n_items = n_items
        self.global_mean = global_mean.astype(np.float32)
        self.embedding_dim = embedding_dim
        self.init_mean = init_mean
        self.init_std_dev = init_std_dev
        self.reg_all = reg_all
        self.reg_user_embed = reg_all if not reg_user_embed else reg_user_embed
        self.reg_item_embed = reg_all if not reg_item_embed else reg_item_embed
        self.reg_impl_embed = reg_all if not reg_impl_embed else reg_impl_embed
        self.reg_user_bias = reg_all if not reg_user_bias else reg_user_bias
        self.reg_item_bias = reg_all if not reg_item_bias else reg_item_bias
        self.random_state = random_state

        self.user_embedding = keras.layers.Embedding(
            input_dim=self.n_users, output_dim=self.embedding_dim,
            embeddings_initializer=tf.keras.initializers.RandomNormal(
                mean=self.init_mean, stddev=self.init_std_dev, seed=self.random_state),
            embeddings_regularizer=tf.keras.regularizers.L2(
                self.reg_user_embed)
        )
        self.item_embedding = keras.layers.Embedding(
            input_dim=self.n_items, output_dim=self.embedding_dim,
            embeddings_initializer=tf.keras.initializers.RandomNormal(
                mean=self.init_mean, stddev=self.init_std_dev, seed=self.random_state),
            embeddings_regularizer=tf.keras.regularizers.L2(
                self.reg_item_embed)
        )
        self.item_implicit_embedding = keras.layers.Embedding(
            input_dim=self.n_items, output_dim=self.embedding_dim,
            embeddings_initializer=tf.keras.initializers.RandomNormal(
                mean=self.init_mean, stddev=self.init_std_dev, seed=self.random_state),
            embeddings_regularizer=tf.keras.regularizers.L2(
                self.reg_impl_embed)
        )
        self.user_bias = keras.layers.Embedding(
            input_dim=self.n_users, output_dim=1,
            embeddings_initializer=tf.keras.initializers.Zeros(),
            embeddings_regularizer=tf.keras.regularizers.L2(self.reg_user_bias)
        )
        self.item_bias = keras.layers.Embedding(
            input_dim=self.n_items, output_dim=1,
            embeddings_initializer=tf.keras.initializers.Zeros(),
            embeddings_regularizer=tf.keras.regularizers.L2(self.reg_item_bias)
        )

    def implicit_feedback(self, X):
        """Maps a user to rated items for implicit feedback.

        Needs to be called before fitting the Model.

        Parameters
        ----------
        X : numpy.ndarray
            User Item table.

        Raises
        ------
        AttributeError
            If this is not called before calling `fit()`.
        """

        self.user_rated_items = [[] for _ in range(self.n_users)]
        for u, i in zip(X[:, 0], X[:, 1]):
            self.user_rated_items[u].append(i)

        # Converts to ragged tensor to be used during forward pass
        self.user_rated_items = tf.ragged.constant(
            self.user_rated_items, dtype=tf.int32)

    def call(self, inputs):
        """Forward pass of input batch."""
        # Separate Inputs
        user, item = inputs[:, 0], inputs[:, 1]

        # Get Embeddings
        user_embed, item_embed = self.user_embedding(
            user), self.item_embedding(item)
        user_bias, item_bias = self.user_bias(user), self.item_bias(item)

        # Gather Rated Items & their lengths
        rated_items = tf.gather(self.user_rated_items, user)
        item_lengths = tf.cast(
            tf.map_fn(tf.shape, rated_items).to_tensor(), dtype=tf.float32)

        # Calculate Implicit Feedback
        implicit_embed = self.item_implicit_embedding(rated_items)
        implicit_embed_sum = tf.reduce_sum(implicit_embed, axis=1)
        moderated_implicit_embed = tf.math.divide(
            implicit_embed_sum, tf.math.sqrt(item_lengths))

        # Calculate Final Rating with bias
        total_user_embed = tf.math.add(user_embed, moderated_implicit_embed)
        rating = tf.math.reduce_sum(tf.multiply(
            total_user_embed, item_embed), 1, keepdims=True)
        total_bias = tf.math.add(
            self.global_mean, tf.math.add(user_bias, item_bias))
        rating = tf.math.add(rating, total_bias)

        return rating

Ancestors

  • tensorflow.python.keras.engine.training.Model
  • tensorflow.python.keras.engine.base_layer.Layer
  • tensorflow.python.module.module.Module
  • tensorflow.python.training.tracking.tracking.AutoTrackable
  • tensorflow.python.training.tracking.base.Trackable
  • tensorflow.python.keras.utils.version_utils.LayerVersionSelector
  • tensorflow.python.keras.utils.version_utils.ModelVersionSelector

Methods

def call(self, inputs)

Forward pass of input batch.

Expand source code
def call(self, inputs):
    """Forward pass of input batch."""
    # Separate Inputs
    user, item = inputs[:, 0], inputs[:, 1]

    # Get Embeddings
    user_embed, item_embed = self.user_embedding(
        user), self.item_embedding(item)
    user_bias, item_bias = self.user_bias(user), self.item_bias(item)

    # Gather Rated Items & their lengths
    rated_items = tf.gather(self.user_rated_items, user)
    item_lengths = tf.cast(
        tf.map_fn(tf.shape, rated_items).to_tensor(), dtype=tf.float32)

    # Calculate Implicit Feedback
    implicit_embed = self.item_implicit_embedding(rated_items)
    implicit_embed_sum = tf.reduce_sum(implicit_embed, axis=1)
    moderated_implicit_embed = tf.math.divide(
        implicit_embed_sum, tf.math.sqrt(item_lengths))

    # Calculate Final Rating with bias
    total_user_embed = tf.math.add(user_embed, moderated_implicit_embed)
    rating = tf.math.reduce_sum(tf.multiply(
        total_user_embed, item_embed), 1, keepdims=True)
    total_bias = tf.math.add(
        self.global_mean, tf.math.add(user_bias, item_bias))
    rating = tf.math.add(rating, total_bias)

    return rating
def implicit_feedback(self, X)

Maps a user to rated items for implicit feedback.

Needs to be called before fitting the Model.

Parameters

X : numpy.ndarray
User Item table.

Raises

AttributeError
If this is not called before calling fit().
Expand source code
def implicit_feedback(self, X):
    """Maps a user to rated items for implicit feedback.

    Needs to be called before fitting the Model.

    Parameters
    ----------
    X : numpy.ndarray
        User Item table.

    Raises
    ------
    AttributeError
        If this is not called before calling `fit()`.
    """

    self.user_rated_items = [[] for _ in range(self.n_users)]
    for u, i in zip(X[:, 0], X[:, 1]):
        self.user_rated_items[u].append(i)

    # Converts to ragged tensor to be used during forward pass
    self.user_rated_items = tf.ragged.constant(
        self.user_rated_items, dtype=tf.int32)